Taking the Subway to Copenhagen - How Transit is Essential to Global GHG Reduction

Presentation Railvolution 2009

Projjal K. Dutta, AIA, LEED AP

pdutta@mtahq.org (212) 878 1065

Director, Sustainability Initiatives

www.mta.info/sustainability
Energy Consumption & Sustainability: Macroview
Energy Consumption by Sector, 2005

India

- Residential: 56%
- Agriculture: 26%
- Transportation: 12%
- Industry: 3%
- Commercial: 3%
- Other: 2%

China

- Residential: 38%
- Transportation: 40%
- Industry: 4%
- Commercial: 4%
- Other: 4%

Germany

- Residential: 29%
- Transportation: 27%
- Industry: 30%
- Commercial: 10%
- Other: 1%

USA

- Residential: 40%
- Transportation: 30%
- Industry: 17%
- Commercial: 12%
- Other: 26%

Source: World Resources Institute
Total Energy Consumption per Capita, 2005

USA: 340 MBTUs
Germany: 178 MBTUs
China: 31 MBTUs
India: 14 MBTUs

Source: Energy Information Administration
Total Energy Consumption per Capita by State, 2005

- California: 232 MBTUs
- Texas: 574 MBTUs
- New York: 217 MBTUs
- NYC: 88.5 MBTUs

Source: Energy Information Administration
Total Carbon Dioxide Emissions per Capita, 2002
Global Carbon Dioxide Emissions per Capita, 1990–2004

Source: US Department of Energy Carbon Dioxide Information Analysis Center (CDIAC)
Energy Consumption & Sustainability: Microview
Energy Use: High-Rise vs. Low-Rise Development

<table>
<thead>
<tr>
<th></th>
<th>High-Rise</th>
<th>Low-Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of buildings</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Average floor size</td>
<td>30,612 sf</td>
<td>36,000 sf</td>
</tr>
<tr>
<td>Area of roof</td>
<td>88,000 sf</td>
<td>375,000 sf</td>
</tr>
<tr>
<td>Area of ext wall</td>
<td>343,000 sf</td>
<td>385,000 sf</td>
</tr>
<tr>
<td>Area of parking</td>
<td>0 sf</td>
<td>1,837,500 sf</td>
</tr>
</tbody>
</table>
Energy Consumption:
Low-Rise Office Park vs. Tall Urban Building
Energy Use: High-Rise vs. Low-Rise Development

Commute: 210,000 BTU/sqft-yr
- 30 mi. round trip
- Private Car, 15 mpg, 1 passenger
- 300 sq.ft. per person, 252 days per year

Commute: 41,000 BTU/sqft-yr
- 30 mi. round trip
- Diesel Bus, 4 mpg, 20 passengers
- 300 sq.ft. per person, 252 days per year
GHG Per Person: Kg CO2E (Carbon dioxide equivalent) / Year

- High Density
 - Transit - Oriented
 - Building Operations
 - Materials
 - Transportation
- Low Density
 - Auto - Oriented

Source: Journal of Urban Planning and Development, Norman, March 2006
Relative GHG Emissions

GHG Emissions of Transportation Options

- SUV (solo driver)
- Car (solo driver)
- Airplane*
- Transit Bus (1/4 full)
- Prius (solo driver)
- Amtrak
- Rail Transit (25 riders/car)
- Carpool (3 occupants)
- Vanpool (6 occupants)
- Transit Bus (3/4 full)
- Rail Transit (50 riders/car)
- Intercity bus
- Walk/bike
- Additional traveller: transit, carpool, vanpool

Pounds Co2 (or equivalents per passenger mile)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Sightline Institute (http://www.sightline.org/maps/charts/climate-CO2byMode)
The Choice
Transit GHG Emissions Typology

Emissions Produced by Transit

- Emissions from Transit
 - Tailpipe emissions from transit vehicles
 - Electricity use for traction
 - Maintenance yards, offices and other stationary sources

Emissions Displaced by Transit

- Avoided Car Trips
 - Mode shift from private autos

- Land-Use Multiplier
 - Compact land-use -> shorter trips, more walk/bike trips
 - Trip chaining
 - Lower car ownership

- Congestion Relief
 - Improved fuel efficiency from reduced congestion

Greenhouse Gas Impacts of Transit

Debit

Credit
MTA GHG Emissions, 2007

Total: 2.7 million metric tons

Transit Effect Multiplier = 8.24
For every unit of GHG that the MTA emits
It helps avoid 8.24 units
In the net it helps avoid about 20 million metric tonnes
Currently un-recognized and un-compensated
Energy/Carbon Facilities Smart Growth/TOD Materials Flow Water Management Climate Adaptation

Metro Transportation Authority State of New York

Greening the MTA
Greening Mass Transit & Metro Regions: The Final Report of the Blue Ribbon Commission on Sustainability and the MTA
• 80% Renewable Energy by 2050
• Revenue from carbon avoidance
• Reduce energy use and GHG emissions on a per passenger-mile basis by 25% by 2019
• Build all new projects and major renovations to LEED Silver standard
• Recommission existing buildings to meet LEED Silver standard
• Create LEED-based MTA Green Guidelines for other building types
Energy Saving through Alignment Design: Humped Tracks
Vegetated, green roofs (MNR Harmond Yard, MTA Bus Far Rockaway Depot, B&T Queens Midtown Tunnel) and white roofs (LIRR Hillside)
• Adopt Life Cycle Accounting
• Quantify and track materials flow
• Green the procurement and budget process
• Flex market power in purchasing
<table>
<thead>
<tr>
<th>Summary of Lightweighting Technologies</th>
<th>Mass Impact (kg)</th>
<th>Fleet-wide Annual Electrical Demand Impact (kWh)</th>
<th>Cost Per 10 Car Train ($k)</th>
<th>Payback Period (Years)</th>
<th>Technology Maturity</th>
<th>Ease of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Free Axle on 1 non-motorized truck replacing OSMES (speed measurement)</td>
<td>3636</td>
<td>3,708,720</td>
<td>0</td>
<td>0</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Floor pans stamped on R160 (540lbs) vs. fabricated on R143 design (600lbs)</td>
<td>282</td>
<td>1,036,611</td>
<td>0</td>
<td>0</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Eliminate OSMES, brackets and equipment</td>
<td>327</td>
<td>763,996</td>
<td>0</td>
<td>0</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Eliminate flip up seats</td>
<td>164</td>
<td>409,268</td>
<td>0</td>
<td>0</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Eliminate unnecessary structural redundancy: secondary center collision posts (2 per A-car)</td>
<td>327</td>
<td>333,785</td>
<td>0</td>
<td>0</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Eliminate 1 of 2 coupler adapters on all NMTs units</td>
<td>200</td>
<td>254,908</td>
<td>0</td>
<td>0</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Advertisement card clips – changed from metal to plastic</td>
<td>45</td>
<td>53,631</td>
<td>0</td>
<td>0</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Investigate using Giga Cell Battery with alternative battery box</td>
<td>1658</td>
<td>7,514,129</td>
<td>4.5</td>
<td>0</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Idea</td>
<td>Rating</td>
<td>Weight (lbs)</td>
<td>Savings</td>
<td>Weight</td>
<td>Rating</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Investigate using Giga Cell Battery with alternative battery box</td>
<td>4.5</td>
<td>7,514,129</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Utilize single draft gear (tube style) link bar (used at B-Car link bar interfaces only) "</td>
<td>1.5</td>
<td>3,988,605</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated Wheels / Lightweight Wheels</td>
<td>5</td>
<td>4,491,430</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite instead of plymetal panel flooring</td>
<td>15</td>
<td>12,546,309</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction in heater grill weight</td>
<td>0.5</td>
<td>77,374</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce number and load on air compressor – Utilize Oilless Compressor concepts</td>
<td>12.5</td>
<td>2,018,598</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redesign of trip cock linkage – (reduce weight from 53 lbs/truck on R142A/R143 design)</td>
<td>0.5</td>
<td>263,925</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ![Highly Rated](Images/HighlyRated.png) | ![Low Rated](Images/LowRated.png) |

Materials Flow: Smart Fleets

MTA Metropolitan Transportation Authority
State of New York
Energy Savings through Material Innovations: Al Third Rail
Is Transit for Everywhere? Cincinnati’s Close Brush
Is Transit for Everywhere? Cincinnati’s Close Brush
Is Transit for Everywhere? Cincinnati’s Close Brush
Is Transit for Everywhere? What happened in NYC
Is Transit for Everywhere? What happened in NYC

[Graph showing population changes in Manhattan, Brooklyn, The Bronx, and Queens from 1900 to 2008]

Metropolitan Transportation Authority
State of New York
Is Transit for Everywhere? What happened in NYC
Is Transit for Everywhere? What happened in NYC
Conclusions

As societies develop/industrialize, their energy needs rise.

Transportation emerges as a major consumer of energy.

Automobile-based paradigm with corollary suburban sprawl is wasteful and unsustainable.

It negates the good effects of “green” building methods and technologies.

Sustainable urban growth has to embrace mass-transit and support density.

Designing the right carbon-constrained system can make this happen.
Taking the Subway to Copenhagen - How Transit is Essential to Global GHG Reduction

Presentation Railvolution 2009

Projjal K. Dutta, AIA, LEED AP

pdutta@mtahq.org (212) 878 1065

Director, Sustainability Initiatives

www.mta.info/sustainability